p38 phosphorylation in medullary microglia mediates ectopic orofacial inflammatory pain in rats

نویسندگان

  • Masaaki Kiyomoto
  • Masamichi Shinoda
  • Kuniya Honda
  • Yuka Nakaya
  • Ko Dezawa
  • Ayano Katagiri
  • Satoshi Kamakura
  • Tomio Inoue
  • Koichi Iwata
چکیده

BACKGROUND Orofacial inflammatory pain is likely to accompany referred pain in uninflamed orofacial structures. The ectopic pain precludes precise diagnosis and makes treatment problematic, because the underlying mechanism is not well understood. Using the established ectopic orofacial pain model induced by complete Freund's adjuvant (CFA) injection into trapezius muscle, we analyzed the possible role of p38 phosphorylation in activated microglia in ectopic orofacial pain. RESULTS Mechanical allodynia in the lateral facial skin was induced following trapezius muscle inflammation, which accompanied microglial activation with p38 phosphorylation and hyperexcitability of wide dynamic range (WDR) neurons in the trigeminal spinal subnucleus caudalis (Vc). Intra-cisterna successive administration of a p38 mitogen-activated protein kinase selective inhibitor, SB203580, suppressed microglial activation and its phosphorylation of p38. Moreover, SB203580 administration completely suppressed mechanical allodynia in the lateral facial skin and enhanced WDR neuronal excitability in Vc. Microglial interleukin-1β over-expression in Vc was induced by trapezius muscle inflammation, which was significantly suppressed by SB203580 administration. CONCLUSIONS These findings indicate that microglia, activated via p38 phosphorylation, play a pivotal role in WDR neuronal hyperexcitability, which accounts for the mechanical hypersensitivity in the lateral facial skin associated with trapezius muscle inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractalkine signaling in microglia contributes to ectopic orofacial pain following trapezius muscle inflammation.

Fractalkine (FKN) signaling is involved in mechanical allodynia in the facial skin following trapezius muscle inflammation. Complete Freund's adjuvant (CFA) injection into the trapezius muscle produced mechanical allodynia in the ipsilateral facial skin that was not associated with facial skin inflammation and resulted in FKN but not FKN receptor (CX3CR1) expression, and microglial activation w...

متن کامل

RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain.

Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However, intracellular signaling cascade of these receptors have not been clearly elucidated. We found that intrathecal injection of 2-(methylthio)adenosine 5'-diphosphate (2Me-SADP) induced mechanical hypersensitivity and p38 mitogen-activated protei...

متن کامل

Activation of p38 mitogen-activated protein kinase in spinal microglia contributes to incision-induced mechanical allodynia.

BACKGROUND Recent studies have implicated the activation of stress-activated mitogen-activated protein kinase (MAPK) p38 in spinal microglial cells for development of neuropathic and inflammatory pain. The aim of the present study was to investigate whether phosphorylation of p38 (p-p38) also mediates mechanical allodynia and thermal hyperalgesia induced by plantar incision. METHODS After rat...

متن کامل

The Role of C Fibers in Spinal Microglia Induction and Possible Relation with TRPV3 Expression During Chronic Inflammatory Arthritis in Rats

Introduction: Stimulation of peptidergic fibers activates microglia in the dorsal horn. Microglia activation causes fractalkine (FKN) release, a neuron-glia signal, which enhances pain. The transient vanilloid receptor 1 (TRPV1) mediates the release of neuropeptides, which can subsequently activate glia. TRPV1 and TRPV2 are generally expressed on C and Aδ fibers, respe...

متن کامل

Effects of crocin and safranal, saffron constituents, on the formalin-induced orofacial pain in rats

Objective: Crocin and safranal are the main components of saffron, and have many biological functions such as anti-inflammatory and antioxidant activities. In the present study, we investigated the effects of crocin, safranal, morphine, diclofenac and naloxone in combined and separately on formalin-induced orofacial pain in rats. Materials and Methods: Subcutaneous injection of a diluted formal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015